X
تبلیغات
علمی -

علمی

شیمی و علوم

شیمی تجزیه
 
شیمی تجزیه شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه از ماده است.

دید کلی

شیمی تجزیه نقش حیاتی را در توسعه علوم مختلف به عهده دارد، لذا ابداع فنون جدید تجزیه و بسط و تکامل روشهای تجزیه شیمیایی موجود ، آنقدر سریع و گسترده است که اندکی درنگ در تعقیب رویدادهای تازه سبب بوجود آمدن فاصله‌های بسیار زیاد علمی خواهد شد. نقش این فنون در فعالیتهای تولیدی روز به روز گسترده‌تر و پردامنه‌تر می‌گردد. امروزه ، کنترل کیفیت محصولات صنعتی و غیر صنعتی ، جایگاه ویژه‌ای دارد که اساس این کنترل کیفیت را تجزیه‌های شیمیایی انجام شده به کمک روشهای مختلف تجزیه‌ای تشکیل می‌دهد.



img/daneshnameh_up/2/23/Shimi-s.jpg




سیر تحولی و رشد

اصولا توسعه و تغییر پایدار در فنون و روشهای تجزیه وجود دارد. طراحی دستگاه بهتر و فهم کامل مکانیسم فرآیندهای تجزیه‌ای ، موجب بهبود پایدار حساسیت ، دقت و صحت روشهای تجزیه‌ای می‌شوند. چنین تغییراتی به انجام تجزیه‌های اقتصادی‌تر کمک می‌کند که غالبا به حذف مراحل جداسازی وقت گیر ، منجر می‌شوند. باید توجه داشت که اگر چه روشهای جدید تیتراسیون مانند کریوسکوپی ، Pressuremetriz ، روشهای اکسیداسیون _ احیایی و استفاده از الکترود حساس فلوئورید ابداع شده‌اند، هنوز از روشهای تجزیه وزنی و تجزیه جسمی (راسب کردن ، تیتراسیون و استخراج بوسیله حلال) برای آزمایشهای عادی استفاده می‌شود.

به هر حال در چند دهه اخیر ، تکنیکهای سریعتر و دقیق‌ترِی بوجود آمده‌اند. در میان این روشها می‌توان به اسپکتروسکوپی ماده قرمز ، ماورای بنفش و اشعه X اشاره کرد که از آنها برای تشخیص و تعیین مقدار یک عنصر فلزی با استفاده از خطوط طیفی جذبی یا نشری استفاده می‌گردد. سایر روشها عبارتند از:


  • کالریمتری (رنگ سنجی) که به توسط آن یک ماده در محلول بوسیله شدت رنگ آن تعیین می‌شود.
  • انواع کروماتوگرافی که به توسط آنها اجزای یک مخلوط گازی بوسیله آن از درون ستونی از مواد متخلل یا از روی لایه‌های نازک جامدات پودری تعیین می‌گردند.
  • تفکیکی محلولها در ستونهای تبادل یونی
  • آنالیز عنصر ردیاب رادیواکتیو.

  • ضمنا میکروسکوپی الکترونی و اپتیکی ، اسپکترومتری جرمی ، میکروآنالیز ، طیف‌سنجی رزونانس مغناطیسی هسته‌ای (NMR) و رزونانس چهار قطبی هسته نیز در همین بخش طبقه بندی می‌شوند.

    خودکارسازی روشهای تجزیه‌ای در برخی موارد با استفاده از رباتهای آزمایشگاهی ، اهمیت روزافزونی پیدا کرده است. چنین شیوه‌ای ، انجام یکسری تجزیه‌ها را با سرعت ، کارایی و دقت بهتر امکانپذیر می‌سازد. میکروکامپیوترها با قابلیت شگفت‌انگیز نگهداری داده‌ها و بسته‌های نرم افزار گرافیکی بطور قابل ملاحظه‌ای موجبات جمع آوری ، نگهداری ، پردازش ، تقوبت و تفسیر داده‌های تجزیه‌ای را فراهم می‌آورند.

انواع تجزیه

وقتی آزمایش به شناسایی یک یا چند چیز جز از یک نمونه (شناسایی مواد) محدود می‌گردد، تجزیه کیفی نامیده می‌شود، در حالی که اگر آزمایش به تعیین مقدار یک گونه خاص موجود در نمونه (تعیین درصد ترکیب در مخلوطها یا اجزای ساختمانی یک ماده خالص) محدود گردد، تجزیه کمی نامیده می‌شود. گاهی کسب اطلاعاتی در زمینه آرایش فضایی اتمها در یک مولکول یا ترکیب بلورین ضروری است، یا تاکید حضور یا موقعیت برخی گروههای عامل آلی در یک ترکیب مورد تقاضا است، چنین آزمایشهایی تحت عنوان تجزیه ساختمانی نامیده می‌شوند و ممکن است با جزئیاتی بیش از یک تجزیه ساده مورد توجه قرار گیرند.

ماهیت روشهای تجزیه‌ای

روشهای تجزیه‌ای معمولا به دو دسته کلاسیک و دستگاهی طبقه بندی می‌شوند. روشهای کلاسیک شامل روشهای شیمیایی مرطوب ، نظیر وزن سنجی و عیار سنجی است. در واقع تفاوت اساسی بین روشهای دو دسته وجود ندارد. همه آنها مشتمل بر وابستگی یک اندازه گیری فیزیکی به غلظت آنالیت می‌باشند. در حقیقت روشهای تجزیه‌ای محدودی وجود دارند که صرفا دستگاهی‌اند و یا بیشتر آنها متضمن مراحل شیمیایی متعددی قبل از انجام اندازه گیری دستگاهی هستند.

کاربردهای شیمی تجزیه

کنترل کیفیت محصول

بیشتر صنایع تولیدی نیازمند به تولید با کیفیت یکنواخت هستند. برای کسب اطمینان از برآورده شدن این نیازمندی مواد اولیه و همچنین محصول نهایی تولید ، مورد تجزیه‌های شیمیایی وسیعی قرار می‌گیرند.

نمایش و کنترل آلوده کننده‌ها

فلزات سنگین پسمانده‌های صنعتی و حشره کشهای آلی کلردار ، دو مشکل کاملا شناخته شده مربوط به ایجاد آلودگی هستند. به منظور ارزیابی چگونگی توزیع و عیار یک آلوده کننده در محیط ، به یک روش تجزیه‌ای حساس و صحیح نیاز است و در کنترل پسابهای صنعتی ، تجزیه شیمیایی روزمره حائز اهمیت است.

مطالعات پزشکی و بالینی

عیار عناصر و ترکیبات مختلف در مایعات بدن ، شاخصهای مهمی از بی نظمی‌های فیزیولوژیکی می‌باشند. محتوی قند بالا در ادرار که نشانه‌ای از یک حالت دیابتی است و وجود سرب در خون ، از شناخته‌ترین مثالها در این زمینه می‌باشد.

عیارگیری

از دیدگاه تجارتی در برخورد با مواد خام نظیر سنگهای معدنی ، ارزش سنگ معدن ، از روی فلز موجود در آن تعیین می‌شود. این موضوع ، مواد با عیار بالا را نیز غالبا شامل می‌شود. بطوری که حتی تفاوت کم در غلظت می‌تواند از نظر تجاری تاثیر قابل ملاحظه‌ای داشته باشد. بنابراین یک روش تجزیه‌ای قابل اعتماد و صحیح از اهمیت اساسی برخوردار است.

آینده شیمی تجزیه

بروز مشکلات تجزیه‌ای در شکلهای جدیدش ادامه دارد. میزان تقاضای مربوط به انجام تجزیه در ابعاد وسیع توسط بسترهای دستگاهی بطور مداوم در حال افزایش است. کاوشهای فضایی ، نمونه‌های گمانه زنی و مطالعات اعماق دریاها مثالهایی از نیازهای قابل طرح می‌باشند. در دیگر زمینه‌ها نظیر مطالعات محیطی و بالینی ، فرم شیمیایی و دقیق یک عنصر در یک نمونه و نه غلظت کلی آن ، اهمیت فزاینده‌ای پیدا کرده است. دو مثال کاملا شناخته شده در این زمینه ، میزان سمیت بسیار زیاد ترکیبات آلی جیوه و سرب در مقایسه با ترکیبات مشابه معدنی است.

تیتراسیون

img/daneshnameh_up/f/fb/titration.jpg

روشی که توسط آن ، محلولی با غلظت مشخص به محلولی دیگر اضافه می‌شود تا واکنش شیمیایی بین دو ماده حل شده کامل گردد، تیتراسیون نامیده می‌شود.

مقدمه

تیتر کردن از روش‌های تجزیه حجمی است. در تجزیه حجمی ابتدا جسم را حل کرده و حجم معینی از محلول آن را با محلول دیگری که غلظت آن مشخص است که همان محلول استاندارد نامیده می‌شود، می‌سنجند. در تیتراسیون محلول استاندارد به‌طور آهسته از یک بورت به محلول حاوی حجم مشخص یا وزن مشخص از ماده حل شده اضافه می‌شود.

افزایش محلول استاندارد ، آنقدر ادامه می‌یابد تا مقدار آن از نظر اکی‌والان برابر مقدار جسم حل شده شود. نقطه اکی‌والان نقطه ای است که در آن ، مقدار محلول استاندارد افزوده شده از نظر شیمیایی برابر با مقدار حجم مورد نظر در محلول مجهول است. این نقطه را نقطه پایان عمل از نظر تئوری یا نقطه هم ارزی نیز می‌گویند.

روش تیتر کردن

در عمل تیتر کردن ، محلول استاندارد را از یک بورت به محلولی که باید غلظت آن اندازه گرفته می‌شود، می‌افزایند و این عمل تا وقتی ادامه دارد تا واکنش شیمیایی بین محلول استاندارد و تیتر شونده کامل شود. سپس با استفاده از حجم و غلظت محلول استاندارد و حجم محلول تیتر شونده ، غلظت محلول تیتر شونده را حساب می‌کنند.

یک مثال

نقطه اکی‌والان در عمل تیتر کردن NaCl با نقره تیترات وقتی مشخص می‌شود که برای هر وزن فرمولی -Cl در محیط یک وزن فرمول +Ag وارد محیط عمل شده باشد و یا در تیتر کردن ، سولفوریک اسید (H2SO4 ) با سدیم هیدروکسید ( NaOH ) نقطه اکی‌والان وقتی پدید می‌آید که دو وزن فرمولی اسید و دو وزن فرمولی باز وارد محیط عمل شوند.

تشخیص نقطه اکی‌والان

نقطه اکی‌والان در عمل بوسیله تغییر فیزیکی ( مثلا تغییر رنگ ) شناخته می‌شود. نقطه ای که این تغییر رنگ در آن روی می‌دهد، نقطه پایان تیتر کردن است. در تیتراسیون اسید و باز شناساگرها برای تعیین زمان حصول نقطه اکی‌والان بکار می‌روند. تغییر رنگ معرف ، نشانگر نقطه پایانی تیتراسیون می‌باشد.

تصویر

انواع تیتر کردن

بر حسب واکنش‌هایی که بین محلول تیتر شونده و استاندارد صورت می‌گیرد، تجزیه‌های حجمی (تیتراسیون) به دو دسته تقسیم می‌شوند:


  • روش‌هایی که بر اساس ترکیب یون‌ها هستند. یعنی تغییر ظرفیت در فعل و انفعالات مربوط به آن صورت نمی‌گیرد. این روش‌ها عبارت اند از:
  1. واکنش‌های خنثی شدن یا واکنش‌های اسید و باز
  2. واکنش‌های رسوبی
  3. واکنش‌هایی که تولید ترکیبات کمپلکس می‌کنند.

تیتر کردن واکنش های اسید و باز یا خنثی شدن

تیتر کردن ، عبارت است از تعیین مقدار اسید یا باز موجود در یک محلول که با افزایش تدریجی یک باز به غلظت مشخص یا بر عکس انجام می‌گیرد. موقعی که محلول یک باز دارای یونهای -OH است به محلول اسید اضافه کنیم، واکنش خنثی شدن انجام می‌شود:


OH- + H3O+ -----> 2H2O


 

محاسبات

معمولا حجم مشخص (V) از محلول اسید با نرمالیته مجهول (N) انتخاب کرده ، به‌کمک یک بورت مدرج به‌تدریج محلو ل یک باز به نرمالیته مشخص (N) به آن اضافه می‌کنند. عمل خنثی شدن وقتی کامل است که مقدار اکی‌والان گرم های باز مصرفی برابر مقدار اکی‌والان گرم های اسید موجود در محلول شود.

برای این که عمل تیتراسیون بدقت انجام شود، باید عمل افزایش محلول باز درست موقعی متوقف گردد که تساوی فوق برقرار شود. روش معمول و همگانی برای تعیین پایان تیتراسیون استفاده از شناساگرهاست. دستگاه PH متر نیز برای محاسبات دقیق در تعیین نقطه اکی والان کاربرد دارد.

اکسیداسیون-احیا



واکنشی را که در آن ، تبادل الکترون صورت می‌گیرد، واکنش اکسیداسیون- احیا Oxidation - reduction نامیده می‌شود.


img/daneshnameh_up/f/f6/_ggttqq_support.gif

تبادل الکترونی

احیا کننده 1<----- ne + احیا کننده 1


 

اکسید کننده 2<-----ne - احیا کننده 2


 

اکسید کننده 2 + اکسید کننده1<----- احیا کننده 2 + احیا کننده 1


پس در نتیجه تبادل الکترونی بین یک اکسید کننده و یک احیا کننده یک واکنش شیمیایی رخ می دهد.

فرآیند اکسیداسیون (اکسایش)

فرآیندی است که در آن یک جسم (اکسید کننده) الکترون می‌گیرد و عدد اکسایش یک اتم افزایش می‌یابد.

فرآیند احیا (کاهش)

فرایندی است که در آن یک جسم (احیا کننده) الکترون از دست می‌دهد و عدد اکسایش یک اتم کاهش می‌یابد.

مثالی از واکنشهای اکسایش و کاهش

بر این اساس ، واکنش زیر یک واکنش اکسایش و کاهش می‌باشد. چون عدد اکسایش اتم S از صفر به +4 افزایش پیدا می‌کند و می‌گوییم گوگرد اکسید شده است و عدد اکسایش اتم O از صفر به -2 کاهش پیدا کرده است و می‌گوییم اکسیژن کاهیده شده است:


S + O2 → SO2


که در آن ، در طرف اول عدد اکسیداسیون هر دو ماده صفر و در طرف دوم ، عدد اکسیداسیون گوگرد در ترکیب +4 و اکسیژن ، -2 است.

اما در واکنش زیر اکسایش- کاهش انجام نمی‌شود، زیرا تغییری در عدد اکسایش هیچ یک از اتمها به وجود نیامده است:


SO2 + H2O → H2SO4


که در SO2 ، عدد اکسیداسیون S و O بترتیب ، +4 و -2 و در آب ، عدد اکسیداسیون H و O بترتیب +1 و -2 و در اسید در طرف دوم ، عدد اکسیداسیون H و S و O بترتیب ، +1 ، +4 و -2 است.

عامل اکسنده و عامل کاهنده

با توجه به چگونگی نسبت دادن اعداد اکسایش ، واضح است که نه عمل اکسایش و نه عمل کاهش بتنهایی انجام پذیر نیستند. چون یک ماده نمی‌تواند کاهیده شود مگر آن که هم‌زمان ماده ای دیگر ، اکسید گردد، ماده کاهیده شده ، سبب اکسایش است و لذا عامل اکسنده نامیده می‌شود و ماده‌ای که خود اکسید می‌شود، عامل کاهنده می‌نامیم.

بعلاوه در هر واکنش ، مجموع افزایش اعداد اکسایش برخی عناصر ، باید برابر مجموع کاهش عدد اکسایش عناصر دیگر باشد. مثلا در واکنش گوگرد و اکسیژن ، افزایش عدد اکسایش گوگرد ، 4 است. تقلیل عدد اکسایش ، 2 است، چون دو اتم در معادله شرکت دارد، کاهش کل ، 4 است.

img/daneshnameh_up/0/01/_ggttqq_bbbb.gif

موازنه معادلات اکسایش- کاهش

دو روش برای موازنه واکنشهای اکسایش- کاهش بکار برده می‌شود: روش یون- الکترون و روش عدد اکسایش.

روش یون- الکترون برای موازنه معادلات اکسایش- کاهش

در موازنه معادلات به روش یون- الکترون ، دو دستور کار که کمی با هم متفاوت‌اند، مورد استفاده قرار می‌گیرد. یکی برای واکنشهایی که در محلول اسیدی انجام می‌گیرد و دیگری برای واکنشهایی که در محلول قلیایی صورت می‌پذیرد.

  • مثالی برای واکنشهایی که در محلول اسیدی رخ می‌دهد، عبارت است:

Cr2O7-2 + Cl- → Cr+3 + Cl2


این واکنش موازنه نشده ، طی عملیات زیر موازنه می شود:


_ابتدا معادله را به صورت دو معادله جزئی که یکی برای نشان دادن اکسایش و دیگری برای نشان دادن کاهش است، تقسیم کرده و عنصر مرکزی را در هر یک از این نیم واکنش ها موازنه می کنیم:


Cr2O7-2 → 2Cr+3


 

2Cl- → Cl2


_اتمهای O و H را موازنه می‌کنیم. در سمتی که کمبود اکسیژن دارد، به ازای هر اکسیژن یک H2O اضافه می‌کنیم و در سمتی که کمبود هیدروژن دیده می‌شود، با افزودن تعداد مناسب +H آن را جبران می کنیم. در مثال بالا، طرف راست ، معادله جزئی اول 7 اتم اکسیژن کم دارد، پس به طرف مزبور 7H2O افزوده می‌شود. پس اتمهای H معادله جزئی اول را با اضافه کردن چهارده +H به طرف چپ معادله، موازنه می‌کنیم. معادله جزئی دوم ، بصورت نوشته شده ، از لحاظ جرمی ، موازنه است:


14H+ + Cr2O7-2 → 2Cr+3 + 7H2O


 

2Cl-→Cl2


_در مرحله بعد ، باید معادلات جزئی را از نظر بار الکتریکی موازنه می‌کنیم. در معادله جزئی جمع جبری بار الکتریکی طرف چپ برابر +12 و در طرف راست +6 است. 6 الکترون به سمت چپ اضافه می‌شود تا موازنه بار برای معادله جزئی اول حاصل شود. معادله دوم با افزودن دو الکترون به طرف راست ان موازنه می‌شود، ولی چون تعداد الکترونهای از دست‌رفته در یک معادله جزئی باید برابر تعداد الکترونهای بدست آمده در معادله جزئی دیگر باشد، بنابراین طرفین معادله جزئی دوم را در 3 ضرب می‌کنیم:


6e- + 14H+ +Cr2O7-2 → 2Cr+3 + 7H2O


 

6Cl- → 3Cl2 + 6e


_معادله نهایی ، با افزایش دو معادله جزئی و حذف الکترونها بدست می‌آید:


14H+ + Cr2O7-2 + 6Cl- → 2Cr+3 + 3Cl2 + 7H2O




 

  • مثالی برای واکنش هایی که در محلول قلیایی صورت می‌گیرد:
MnO4- + N2H4 → MnO2 + N2




_معادله به دو معادله جزئی تقسیم می شود:


MnO4- → MnO2


 

N2H4→N2


_برای موازنه H و O در این واکنش‌ها ، درسمتی که کمبود اکسیژن دارد، به ازای هر اتم اکسیژن -2OH و سمت دیگر یک H2O اضافه می‌کنیم و در سمتی که کمبود هیدروژن دارد به ازای هر اتم هیدروژن ، یک H2O و در سمت مقابل یک -OH اضافه می‌کنیم. سمت راست معادله جزئی اول دو اتم O کم دارد. لذا -4OH به سمت راست و 2H2Oبه سمت چپ می‌افزاییم:


2H2O + MnO4- → MnO2 + 4OH


برای موازنه جرمی معادله جزئی دوم ، باید چهار اتم هیدروژن به سمت راست اضافه کنیم، لذا 4H2O به سمت راست و -4OH به سمت چپ اضافه می‌کنیم:


-4OH + N2H4 → N2 + 4H2O


_برای موازنه بار الکتریکی ، هر جا لازم است، الکترون اضافه می‌کنیم و در این جا بطرف چپ معادله جزئی اول ، سه الکترون و بطرف چپ معادله جزئی دوم ، چهار الکترون افزوده می‌شود و برای موازنه کردن الکترونهای بدست آمده و از دست رفته ، مضرب مشترک گرفته و معادله اول را در 4 و معادله دوم را در 3 ، ضرب می‌کنیم:


12e- + 8H2 + 4MnO4- → 4MnO2 + 16OH


_جمع دو معادله جزئی، معادله نهایی را بدست می‌دهد:


4MnO4- + 3N2H4 →4OH- + 4MnO2 + 3N2 + 4H2O


 

روش عدد اکسایش برای موازنه واکنشهای اکسایش- کاهش

موازنه شامل سه مرحله است. برای مثال واکنش نیتریک اسید و هیدروژن سولفید را در نظر می‌گیریم. معادله موازنه نشده به قرار زیر است:


HNO3 + H2S→ NO + S + H2O


_برای تشخیص اتمهایی که کاهیده یا اکسیده می‌شوند، اعداد اکسایش آنها را از معادله بدست می‌آوریم:

نیتروژن کاهیده شده (از +5 به +2 ، کاهشی معادل 3 در عدد اکسایش) و گوگرد اکسید شده است (از -2 به صفر ، یعنی افززایشی معادل 2 در عدد اکسایش).


_برای ان که مجموع کاهش در اعداد اکسایش برابر با مجموع افزایش این اعداد باشد، ضرایبی متناسب به هر ترکیب نسبت می‌دهیم:


2HNO3 + 3H2S→2NO + 3S +H2O


_موازنه معادله را ، با بررسی دقیقتر ، کامل می‌کنیم. در مراحل پیشین تنها موازنه موادی مطرح شد که اعداد اکسایش انها تغییر می‌کند. در این مثال‌ ، هنوز ضریبی برای H2O در نظر گرفته نشده است. ولی ملاحظه می‌شود که در سمت چپ واکنش 8 اتم H وجود دارد. همان سمت 4 اتم O نیز اضافی دارد. بنابراین ، برای تکمیل موازنه ، باید در سمت راست معادله ، 4H2O نشان داده شود:


2HNO3 + 3H2S → 2NO +3S + 4H2O


پس معادلات اکسایش- کاهش مانند واکنش‌های الکتروشیمیایی و واکنش های یونی را می‌توان با یکی از دو روش نامبرده موازنه کرد.

تجزیه حجم سنجی



img/daneshnameh_up/a/a6/buret.jpg

تجزیه ای که بر سنجش دقیق حجم یک محلول ، استوار است، تجزیه حجم سنجی نامند.

تیتراسیون

در تجزیه حجم سنجی ، طرز کاری موسوم به تیتراسیون مورد استفاده قرار می‌گیرد.

محلول استاندارد و شناساگر

در یکی از انواع تیتراسیون ، محلولی با غلظت معین که محلول استاندارد خوانده می‌شود، به حجم معینی از محلولی که غلظت آن معین نیست، ولی با محلول استاندارد ترکیب می‌شود، اضافه می‌کنند. محلول استاندارد را در لوله شیشه ای مدرجی که بورت نامیده می‌شود، قرار می‌دهند. در انتهای پایینی بورت ، شیری تعبیه شده است که ریختن مقادیر کنترل شده ای از محلول استاندارد را به درون ظرف حاوی محلول با غلظت نامعلوم اماکنپذیر می‌سازد.

حجم معینی از محلول با غلظت نامعلوم را یا وزن معینی از ماده جامدی که خلوص آن معلوم نیست و در آب حل شده است، در یک ارلن می‌ریزیم و چند قطره از ماده ای که به شناساگر موسوم است، به آن اضافه می‌کنیم.

نقطه هم‌ارزی

طی عمل افزایش ، ارلن را با چرخاندن به هم می زنیم تا کاملا محتوی ، یکدست شود. نقطه هم ارزی در نقطه پایانی که با تغییر رنگ شناساگر مشخص می‌شود، از دو واکنشگر ( یعنی محلول استاندارد و ماده درون ارلن ) مقادیر هم ارز وارد واکنش شده است. حجم محلول استاندارد مصرف شده از بورت خوانده می‌شود.

img/daneshnameh_up/f/fb/titration.jpg

برخی دیگر از انواع تیتراسیون

در برخی دیگر از انواع تیتراسیون ، حجم معینی از محلول استانداردبا وزن معینی از ماده با خلوص معین که در آب حل شده است، در ارلن قرار داده می‌شود. سپس محلول نامعلوم از بورت به ارلن افزوده می‌شود تانقطه هم‌ارزی بدست آید.

انواع تجزیه حجم سنجی

سه نوع متداول تجزیه حجم سنجی عبارتند از:


  • واکنشهای تراسبی
  • خنثی شدن اسید و باز
  • واکنشهای اکسایش-کاهش
مولاریته

نگاه کلی

مولاریته یا غلظت مولار که با (M) نشان داده می‌شود، عبارت است از تعداد وزن مولکول گرم (یا تعداد مول) از یک جسم حل شده در یک لیتر محلول. مول کمیت اساسی است که یک شیمیدان تجزیه با آن سر و کار زیادی دارند. یک مول برابر با 6.023X1023 مولکول از یک جسم است. اصطلاح مول در یک مفهوم وسیع برای توصیف مقادیر ترکیبات مولکولی ، عناصر آزاد و یونها بکار می‌رود. به بیان دیگر وزن تعداد 6.023X1023 عدد مولکول ، یون یا عنصر برابر با 1 مول مولکول ، یون یا عنصر است که به صورت مولکول گرم ، یون گرم یا عنصر گرم نامیده می‌شود.

تهیه محلولهای مولار

برای تهیه یک محلول مولار از یک ترکیب باید یک مول از آن را وزن کرده و به مقدار کافی به آن آب اضافه کنیم تا دقیقا یک لیتر محلول بدست آید. به عنوان مثال برای تهیه یک محلول 2M از اسید سولفوریک باید گرم 196.16=98.08×2 از اسید سولفوریک را در مقدار کافی آب حل کنیم تا یک لیتر محلول 2M اسید سولفوریک بدست آید. وقتی یک محلول مایع تهیه می‌کنیم، حجم محلول به ندرت مساوی مجموع حجمهای اجزا خالص سازنده آن است. معمولا حجم نهایی محلول بیشتر یا کمتر از مجموع حجمهای اجزا سازنده آن است.

از این رو برای تهیه یک محلول معین عملا نمی‌توانیم مقدار حلال لازم را پیش‌بینی کنیم. برای تهیه محلولهای مولار و سایر محلولهایی که بر اساس حجم کل است، معمولا از بالنهای حجم‌سنجی استفاده می‌شود. در این صورت برای تهیه یک محلول مقدار دقیق ماده حل شونده را در بالن جای می‌هیم و با دقت آن قدر آب می‌افزائیم و بطور مداوم و با احتیاط هم می‌زنیم تا سطح محلول به خط نشانه‌ای که روی گردن بالن مشخص شده برسد.

محاسبه غلظت یک محلول بر حسب مولاریته

برای محاسبه غلظت یک محلول بر حسب مولاریته ابتدا باید تعداد مولهای جسم حل شده را بدست آوریم. تعداد مولهای جسم حل شده از تقسیم کردن وزن آن (برحسب گرم) به وزن فرمولی بدست می‌آید.


  1. اگر ماده حل شده به صورت مولکولی باشد، در آن صورت تعداد مول از فرمول وزن مولکولی/گرمهای ماده حل شده=تعداد مولها (مولکول حل شده) محاسبه می‌شود.

  2. اگر بخواهیم تعداد مولهای یک یون را محاسبه کنیم، باید بجای وزن مولکولی وزن یون مربوطه را در فرمول قرار دهیم. یعنی وزن یونی/گرمهای ماده حل شده=تعداد مول‌ها (یون حل شده).

  3. اگر ماده حل شده به صورت اتمی باشد، مثلا نقره فلزی در آن صورت تعداد مولها از فرمول وزن اتمی/گرمهای ماده حل شده = تعداد مولها (اتم حل شده) بدست می‌آید. بعد از بدست آوردن تعداد مولهای ماده حل شده با قرار دادن آن در فرمول غلظت مولار ، مولاریته محلول بدست می‌آید. یعنی داریم

لیتر محلول/میلی مولهای ماده حل شده= M

یا
لیتر محلول/تعداد مول‌های حل شده=M

وقتی غلظت محلول بر حسب مولاریته بیان می‌شود، محاسبه مقدار ماده حل شده موجود در یک نمونه معین از محلول آسان است. به عنوان مثال یک لیتر محلول 2 مولار دارای 2 مول ماده حل شده است. 500ml آن دارای یک مول ماده حل شده ، 100ml آن دارای 0.2 مول ماده حل شده است.

نکته مهم

تنها اشکال تعیین غلظتها بر اساس حجم محلول این است که چنین غلظتهایی با تغییر دما اندکی تغییر می‌کنند، زیرا تغییر دما موجب انقباض یا انبساط محلول می‌شود. بنابراین برای اینکه غلظت محلول تهیه شده دقیق‌تر باشد، باید محلول در دمایی که قرار است استفاده شود، تهیه شده و از بالن حجم ‌سنجی که در این دما مدرج شده است استفاده شود.

شیمی تجزیه کمی
تصویر

دید کلی

شیمی تجزیه (Analytical chemistry) ، شامل جداسازی ، شناسایی و تعیین مقدار نسبی اجزای سازنده یک نمونه ‌از ماده ‌است. شیمی تجزیه کیفی ، هویت شیمیایی گونه‌ها را در نمونه آشکار می‌سازد. تجزیه کمی ، مقدار نسبی یک یا چند گونه یا آنالیت را به‌صورت عددی معلوم می‌دارد. پیش از انجام تجزیه کمی ‌، ابتدا لازم است اطلاعات کیفی بدست آید. معمولا تجزیه کیفی و کمی ‌شامل یک مرحله جداسازی نیز هستند.

نقش شیمی ‌تجزیه در علوم

شیمی تجزیه نقش حیاتی در توسعه علوم دارد. به عنوان مثال ، "ویلهلم اسوالد" (Wilhelm Ostwald) در سال 1894 نوشت:

««شیمی ‌تجزیه یا هنر تشخیص مواد مختلف و تعیین اجزای سازنده آن ، نقش اول را در کاربردهای مختلف علوم دارد؛ چرا که پاسخگوی سوالاتی است که در هنگام اجرای
فرایندهای شیمیایی برای مقاصد علمی ‌و فنی مطرح می‌شود. اهمیت فوق‌العاده آن ، باعث شده ‌است که ‌از همان دوران نخستین تاریخ شیمی ‌، مجدانه شروع به رشد و توسعه کند و سوابق موجود شامل بخش قابل ملاحظه ای از کارهای کمی ‌است که تمامی‌ علوم را در بر می‌گیرد'.»»

از زمان اسوالد تاکنون ، شیمی‌ تجزیه ‌از یک هنر به یک علم در زمینه‌های مختلف صنعت ، طب و سایر علوم ، تحول و تکامل یافته ‌است. به‌عنوان مثال :


  • برای تعیین کارآیی وسایل کنترل دور ، لازم است مقدار هیدروکربنها ، اکسیدهای نیتروژن و منوکسید کربن موجود در گازهای اگزوز اتومبیل اندازه گیری شوند.

  • اندازه گیری کمّی‌ کلسیم یونیده در سرم خون ، ما را در تشخیص مرض پاراتیروئید در بیماران یاری می‌کند.

  • با اندازه گیری کمی نیتروژن در مواد غذایی ، میزان پروتئین موجود در آنها و در نتیجه ‌ارزش غذایی آنها معلوم می‌شود.

  • مقدار مرکاپتان موجود در گازهای مصرفی خانه‌ها بطور مستمر تحت کنترل قرار می‌گیرد تا از وجود مقدار معینی مرکاپتان برای ایجاد بوی نامطبوع که هشدار دهنده نشت گاز است، اطمینان حاصل کنند.

  • کشاورزان متجدد ، کود شیمیایی و آبیاری را به نحوی تنظیم می‌کنند که منطبق با نیاز گیاه در طی فصلهای رشد باشد. آنها این نیاز را از تجزیه کمی‌ گیاه و خاکی که گیاه در آن می‌روید، معلوم می‌کنند.

  • ‌اندازه گیری‌های کمی ‌دارای نقش حیاتی در بسیاری از کارهای پژوهشی در زمینه‌های شیمی‌ ، زیست شناسی ، زیست شیمی ‌، زمین شناسی و سایر علوم است.

تصویر

طبقه‌بندی روشهای تجزیه کمی

نتایج یک تجزیه کمی ‌را از دو اندازه گیری بدست می‌آوریم. یکی وزن یا حجم نمونه مورد اندازه گیری است و دوم ، اندازه گیری کمیتی است که با مقدار ماده مورد تجزیه در آن نمونه متناسب می‌باشد. معمولا در مرحله دوم ، تجزیه ، کامل می‌شود. شیمیدانان روشهای تجزیه را بر طبق طبیعت این اندازه گیری اخیر طبقه‌بندی می‌کنند. در یک روش وزنی ، جرم آنالیت یا جرم ماده‌ای که بطور شیمیایی به آن ارتباط دارد، تعیین می‌شود. در یک روش حجمی ‌، حجم محلولی که دارای مقدار کافی واکنشگر برای واکنش کامل با آنالیت است، اندازه گیری می‌شود.

روشهای الکتروشیمیایی شامل اندازه گیری خواصی نظیر پتانسیل ، جریان ، مقاومت و مقدار الکتریسیته است. روشهای طیف‌بینی بر مبنای اندازه گیری برهمکنش بین تابش الکترومغناطیسی و اتمها یا مولکولهای آنالیت (اثر تابش بر ماده) و یا تولید چنین تابشی توسط آنالیت استوارند.

بالاخره ، باید به چند روش متفرقه نیز اشاره کرد. این روشها شامل اندازه گیری خواصی چون نسبت جرم به بار (
طیف سنجی جرمی‌ ) ، سرعت واپاشی پرتوزایی ، گرمای واکنش ، رسانندگی گرمایی ، فعالیت نوری و ضریب شکست است.

مراحل تجزیه کمی ‌نوعی


انتخاب روش تجزیه

اولین مرحله حیاتی در هر تجزیه کمی ‌، انتخاب روش است. انتخاب گاهی دشوار است و به تجربه و بصیرت شیمیدان بستگی دارد. از عوامل مهم در انتخاب روش ، میزان صحت مورد انتظار است. متاسفانه برای دستیابی به نتایج بسیار مطمئن ، همواره لازم است که وقت زیادی نیز صرف شود. معمولا ، روش را بر اساس مصالحه بین میزان صحت و جنبه‌های اقتصادی انتخاب می‌کنند.

دومین عاملی که در ارتباط با جنبه‌های اقتصادی در نظر گرفته می‌شود، تعداد نمونه‌های مورد تجزیه ‌است. اگر تعداد نمونه‌ها زیاد باشد، در آن صورت می‌توان وقت زیادی را صرف عملیات مقدماتی نظیر نصب و درجه‌بندی دستگاه‌ها و وسایل و همچنین تهیه محلولهای استاندارد کرد، اما اگر فقط یک نمونه یا نهایتا تعداد کمی ‌نمونه داشته باشیم، شاید صلاح در انتخاب روشی باشد که مراحل مقدماتی را یا نداشته و یا حداقل ممکن را داشته باشد.

نمونه برداری

برای دستیابی به ‌اطلاعات ارزشمند ، لازم است تجزیه بر روی نمونه ای انجام شود که ترکیب آن ، کاملا معرف تمامی ‌ماده‌ای که نمونه ‌از آن انتخاب شده ‌است، باشد. هنگامی‌ که ماده بزرگ و ناهمگن است، برای انتخاب نمونه نماینده باید سعی و دقت بسیار معطوف شود. نمونه برداری چه ساده باشد، چه پیچیده ، شیمیدان قبل از آغاز عملیات تجزیه باید از اینکه نمونه آزمایشگاهی نماینده کل محموله ‌است، اطمینان یابد.

تهیه نمونه آزمایشگاهی

یک نمونه جامد آزمایشگاهی را آسیاب می‌کنند تا اندازه ذرات آن کاهش یابد، سپس مخلوط می‌کنند تا همگن شود و قبل از انجام تجزیه بر روی آن ، برای مدت زمانهای مختلف نگهداری می‌کنند. در هر یک از این مراحل ، برحسب میزان رطوبت محیط ، ممکن است جذب یا دفع سطحی آب اتفاق افتد. چون ممکن است جذب یا دفع آب باعث تغییرات شیمیایی در نمونه شود، لذا بهتر است نمونه‌ها را درست قبل از انجام تجزیه ، خشک کنیم. روش دیگر آنکه ، رطوبت نمونه را همزمان با انجام تجزیه بر روی نمونه ، طبق یک روش جداگانه ، اندازه گیری کنیم.

استفاده ‌از نمونه‌های همتا

اکثر تجزیه‌های شیمیایی بر روی نمونه‌های همتا که وزن یا حجم آنها با دقت توسط ترازوی تجزیه و یا یک وسیله حجمی ‌دقیق تعیین شده ‌است، انجام می‌شود. همتاسازی موجب ارتقای کیفیت نتایج و همچنین معیاری برای قابلیت اطمینان آنها خواهد بود.

تهیه محلولهای نمونه

بیشتر تجزیه‌ها بر روی محلول حاصل از نمونه‌ها انجام می‌شود. در حالت ایده‌آل ، حلال باید تمامی ‌نمونه (نه فقط آنالیت) را به‌سرعت و بطور کامل حل کند. شرایط انحلال باید در حد امکان ملایم باشد تا مانع از اتلاف آنالیت شود. متاسفانه بسیاری از مواد مورد تجزیه در حلالهای معمولی نامحلولند. مواد سیلیکاتی ، بسپارهای با جرم زیاد یا نسوج حیوانی از این قبیل هستند. در چنین مواردی تبدیل آنالیت به حالت محلول می‌تواند یک امر دشوار و وقت‌گیر باشد.

تصویر

حذف تداخل کننده‌ها

تعداد کمی ‌از خواص شیمیایی و فیزیکی مهم در تجزیه‌های شیمیایی به گونه شیمیایی خاصی منحصر است. در عوض ، واکنشهایی که بکار می‌رود و خواصی که ‌اندازه گیری می‌شود، شامل ویژگی گروهی از عناصر و ترکیبات است. گونه‌های غیر از آنالیت را که بر اندازه گیری نهایی موثرند، «تداخل کننده» می‌نامند. تدابیری باید اندیشید تا قبل از اندازه گیری نهایی ، آنالیت از تداخل کننده‌ها جدا شود. هیچ قاعده و قانون قطعی برای حذف تداخل کننده‌ها نمی‌توان ذکر کرد که حل این مساله ، دشوارترین مرحله یک تجزیه ‌است.

درجه‌بندی و اندازه گیری

تمامی ‌نتایج حاصل از تجزیه به ‌اندازه گیری نهایی X که یک خاصیت فیزیکی آنالیت است، بستگی دارد. این خاصیت باید به صورت معین و تکرارپذیر با تغییر غلظت آنالیت CA تغییر کند. در حالت ایده‌آل ، خاصیت فیزیکی اندازه گیری شده ، مستقیما با غلظت متناسب است. یعنی :

CA=kX

که در آن k ثابت تناسب است. برای روشهای تجزیه ، باید مقدار k به صورت تجربی و با CA معلوم تعیین شود. فرایند تعیین مقدار k مرحله مهمی ‌است و به نام درجه‌بندی موسوم است.

محاسبه نتایج

معمولا ، محاسبه غلظت آنالیت با استفاده ‌از داده‌های تجربی ، بویژه با ماشینهای محاسبه و کامپیوتر مدرن ، یک امر ساده و سرراست است. چنین محاسباتی بر مبنای داده‌های خام که در مرحله ‌اندازه گیری بدست آمده‌اند و همچنین استوکیومتری واکنش شیمیایی که تجزیه بر اساس آن انجام یافته ‌است و بالاخره عوامل دستگاه ، ‌استوار است.

ارزیابی نتایج و برآورد میزان اطمینان آنها

نتایج تجزیه بدون برآورد میزان اطمینان آنها کامل نیست. شخص آزمایش کننده ، برای آنکه داده‌ها ارزشمند باشند، لازم است میزان عدم قطعیت نتایج محاسبه شده را معلوم کند (محاسبه خطا).

کروماتوگرافی
 

ریشه لغوی

کروماتوگرافی (chromatoghraphy) ، در زبان یونانی chroma یعنی رنگ و grophein یعنی نوشتن است.

اطلاعات اولیه

پر کاربردترین شیوه جداسازی مواد تجزیه‌ای کروماتوگرافی است که در تمام شاخه‌های علوم کاربردهایی دارد. کرماتوگرافی گروه گوناگون و مهمی از روش‌های جداسازی مواد را شامل می‌شود و امکان می‌دهد تا اجزای سازنده نزدیک به هم مخلوط‌های کمپلکس را جدا ، منزوی و شناسایی کند بسیاری از این جداسازی‌ها به روش‌های دیگر ناممکن است.

سیر تحولی رشد

توصیف کروماتوگرافی

کروماتوگرافی را به دلیل اینکه در برگیرنده سیستمها و تکنیکهای مختلفی است نمی‌توان به طور مشخص تعریف کرد. اغلب جداسازی‌ها بر مبنای کروماتوگرافی بر روی مخلوطهایی از مواد بی‌رنگ از جمله گازها صورت می‌گیرد. کروماتوگرافی متکی بر حرکت نسبی دو فاز است ولی در کروماتوگرافی یکی از فازها بدون حرکت است و فاز ساکن نامیده می‌شود و دیگری را فاز متحرک می‌نامند. اجزای یک مخلوط به وسیله جریانی از یک فاز متحرک از داخل فاز ساکن عبور داده می‌شود. جداسازی‌ها بر اساس اختلاف در سرعت مهاجرت اجزای مختلف نمونه استوارند.

روش‌های کروماتوگرافی

روش‌های کروماتوگرافی را می‌توان ابتدا بر حسب ماهیت فاز متحرک و سپس بر حسب ماهیت فاز ساکن طبقه‌بندی کرد. فاز متحرک ممکن است گاز یا مایع و فاز ساکن ممکن است جامد یا مایع باشد. بدین ترتیب فرآیند کروماتوگرافی به چهار بخش اصلی تقسیم می شود. اگر فاز ساکن جامد باشد کروماتوگرافی را کروماتوگرافی جذب سطحی و اگر فاز ساکن ، مایع باشد کروماتوگرافی را تقسیمی می‌نامند.

انواع کروماتوگرافی

هر یک از چهار نوع اصلی کروماتوگرافی انواع مختلف دارد:


مزیت روشهای کروماتوگرافی

  • با روشهای کروماتوگرافی می‌توان جداسازی‌هایی را که به روش‌های دیگر خیلی مشکل می‌باشند انجام داد. زیرا اختلافات جزئی موجود در رفتار جزئی اجسام در جریان عبور آنها از یک سیستم کروماتوگرافی چندین برابر می‌شود‌. هر قدر این اختلاف بیشتر شود قدرت جداسازی مواد بیشتر و برای انجام جداسازی مواد نیاز کمتری به وجود اختلافات دیگر خواهد بود.

  • مزیت کروماتوگرافی نسبت به ستون تقطیر این است که نسبتا آسان می‌توان به آن دست یافت با وجود اینکه ممکن است چندین روز طول بکشد تا یک ستون تقطیر به حداکثر بازده خود برسد ولی یک جداسازی مواد کروماتوگرافی می‌تواند در عرض چند دقیقه یا چند ساعت انجام گیرد.

  • یکی از مزایای برجسته روش‌های کروماتوگرافی این است که آنها آرام هستند. به این معنی که احتمال تجزیه مواد جداشونده به وسیله این روش‌ها در مقایسه با سایر روش‌ها کمتر است.

  • مزیت دیگر روش‌های کروماتوگرافی در این است که تنها مقدار بسیار کمی از مخلوط برای تجزیه لازم است به این دلیل روش‌های تجزیه‌ای مربوط به جداسازی مواد کروماتوگرافی می‌توانند در مقیاس میکرو و نیمه میکرو انجام گیرند.

  • روش‌های کروماتوگرافی ساده سریع و وسایل مورد لزوم آنها ارزان هستند. مخلوط‌های پیچیده را می‌توان نسبتا به آسانی به وسیله این روش‌ها به دست آورد.





انتخاب بهترین روش کروماتوگرافی

انتخاب نوع روش کروماتوگرافی بجز در موارد واضح (مانند کروماتوگرافی گازی در جداسازی مواد گازها) عموما تجربی است. زیرا هنوز هیچ راهی جهت پیش بینی بهترین روش برای جداسازی مواد اجسام مگر در چند مورد ساده وجود ندارد. در ابتدا روش‌های ساده‌تر مانند کروماتوگرافی کاغذی و لایه نازک امتحان می‌شوند. زیرا این روش‌ها در صورتی که مستقیما قادر به جداسازی مواد نباشند نوع سیستم کروماتوگرافی را که جداسازی مواد بوسیله آن باید صورت بگیرد، مشخص می‌کنند آنگاه در صورت لزوم از روش‌های پیچیده‌تر استفاده می‌شود. از فهرست زیر می‌توان به عنوان یک راهنمای تقریبی استفاده کرد‌.

در جداسازی‌های مشکل وقتی که روش‌های ساده فاقد کارایی لازم هستند روش
کروماتوگرافی مایع با کارایی بالا (HELC) می تواند جوابگو باشد



 

+ نوشته شده در  سه شنبه نهم بهمن 1386ساعت 19:28  توسط سبحان درویشی  |